Őssejt terápia intelligens eszközökkel

Az utóbbi tíz év kutatásai megerősítették, hogy a csontvelő is képes olyan őssejteket termelni, amely a szervezetünkben lévő hibákat (pl. érrendszer, idegrendszer, szív) képes kijavítani. A szervezet képes saját magát „gyógyítani”. További kutatások arra engednek következtetni, hogy számos élelmiszer alkalmas arra, hogy a csontvelő őssejt termelő munkáját fokozza. Azonban az „őssejt fokozás” problémája nem ilyen egyszerű.

Abban az esetben, ha a szervezetben a szív és érrendszer rizikófaktorai jelen vannak, a szervezetben termelődött őssejtek károsodottak és így nem tudják a testben keletkezett hibákat kijavítani. Ilyen rizikófaktorok lehetnek: magas vérnyomás, magas LDL koleszterin szint, alacsony HDL koleszterin szint, rossz inzulin érzékenység, magas cukorszint, magas trigliceridszint, dohányzás. Fontos felhívni a figyelmet itt arra, hogy rossz inzulin érzékenység esetén a szervezetnek sokkal nagyobb inzulin szintre van szüksége ahhoz, hogy megfelelő cukorszint alakuljon ki a testben. A magas inzulin szint viszont szív és érrendszeri problémákat, ill. rákot okozhat.

A túlsúly is a rizikófaktorok közé tartozik, mivel az inzulin érzékenységet rontja. Egyidejűleg kell a szív és érrendszer rizikófaktorait csökkenteni és a csontvelő őssejt termelését fokozni abból a célból, hogy terápiás célzattal a szervezet őssejt termelését fokozzuk. A testmozgás (pl. futás) képes mindkettőre: növeli az inzulin érzékenységet és így csökkenti a cukor szintet valamint akár 400% -al is fokozhatja a csontvelő őssejt termelését. Számos élelmiszerről is kimutatták, hogy alkalmasak mind a rizikófaktorok csökkentésre, mind a szervezet saját őssejtjeinek szaporítására, valamint hasznosak lehetnek a központi idegrendszer és a szív és érrendszer megbetegedéseinek enyhítésére. Kiemelendőek a gyógygomba kivonatok között a kígyószál, lepkefű, hernyógomba, cseppkőgomba kivonatok. Említésre méltó az apigenin gyulladás gátló hatása is, amelyről kimutatták, hogy megelőzheti a központi idegrendszer valamin a szív és érrendszer megbetegedéseit.

Az agyi őssejt fokozásnak (Hippocampus) depresszió ellenes hatását is kimutatták. A cseppkőgomba kiemelendő ebben a tekintetben. Az étrend kiegészítők megfelelő összetételben alkalmasak lehetnek arra, hogy elősegítsék a szervezet őssejtjeinek egészséges működését. Pusztán „őssejt fokozással” az említett problémák miatt csak korlátozott eredményeket érhetünk el. Fel kell használnunk a tudomány legújabb eredményeit ahhoz, hogy igazán hatékony „őssejt fokozót” hozzunk létre.

 

A cikkben szereplő megállapítások nem vonatkoztathatóak a honlapon található termékeinkre.

 

Felhasznált szakirodalom:

Cotman, CW., et al.: Exercise builds brain health: key roles of growth factor cascades and inflammation; In: Trends Neurosci., 2007, 30(9):464-72.

Brene, S., et al.: Running is rewarding and antidepressive; In: Physiol Behav., 2007, 92(1-2): 136-40.

Bjornebekk, A., et al.: The antidepressant effect of running is associated with increased hippocampal cell proliferation; In: Int J Neuopsychopharmacol., 2005, 8(3):357-68.

Luo, CX., et al.: Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke; In: J Neurosci Res., 2007, 85(8): 1637-46.

Dranovsky, A., et al.: Hippocampal neurogenesis: regulation by stress and antidepressants; In: Biol Psychiatry. 2006, 59(12):1136-43.

Warner-Schmidt, JL., et al.: Hippocampal neurogenesis: opposing effect of stress and antidepressant treatment; In: Hippocampus., 2006, 16(3): 239-49.

Lee, HH., et al.: Maternal swimming during pregnancy enhances short-term memory and neurogenesis in the hippocampus of rat pups; In: Brain Dev., 2006, 28(3): 147-54.

Kim, H., et al.: The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups; In: Int J Dev Neurosci., 2007, 25(4): 243-9.

Duman, RS.: Neurotrophic factors and regulation of mood: role of exercise, diet and metabolism; In: Neurobiol Aging., 2005, 26(1): 88-93.

Duman, RS. et al.: A neurotrophic model for stress-related mood disorders; In: Biol Psychiatry., 2006, 59(12):1116-27.

Bjornebekk, A., et al.: The antidepressant effect of running is associated with increased hippocampal cell proliferation; In: Int J Neuropsychopharmacol., 2005, 8(3): 357-68.

Faraci, FM., et al.: Protecting the brain with eNOS: Run for your life; In: Circ. Res., 2006, 99:1029-1030.

Gertz, K., et al.: Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow; In: Circulation Research, 2006, 99:1132-1140.

Ernst, C., et al.: Antidepressant effect of exercise: evidence for an adult-neurogenesis hypothesis? In: J Psychiatry Neuroscience, 2006, 31(2):84-92.

van Praag, H., et al.: Exercise enhances learning and hippocampal neurogenesis in aged mice; In: J. Neuroscience, 2005, 25(38):8680-8685.

Adlard, PA., et al.: Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’sdisease; In: J. Neuroscience., 2005, 25(17):4217-21.

Tillerson, JL., et al.: Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s sisease; In: Neuroscience., 2003, 119(3):899-911.

Winter, B., et al.: High impact running improves learning; In: Neurobiol Learn Mem., 2007, 87(4):597-609.

Ferris, LT., et al.: The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function; In: Med Sci Sports Exerc., 2007, 39(4):728-34.

Shaffer, RG., et al.: Effect of acute exercise on endothelial progenitor cells in patients with peripheral arterial disease; In: Vascular Medicine, 2006, 11: 219-226.

Werner, N., et al.: Circulating endothelial progenitor cells and cardiovascular outcomes; In: New England Journal of Medicine, 2005, 353:999-1007.

Radom-Aizik, S., et al.: The effect of acute exercise on circulating CD34+ stem cell in early and late pubertal boys; In: FASEB, 2006, 20:A1404.

Frielingsdorf, H., et al.: Nerve growth factor promotes survival of new neurons in the adult hippocampus; In: Neurobiol Dis., 2007, 26(1): 47-55.

Mashayekhi, F., et al.: Infusion of anti-nerve growth factor into the cisternum magnum of chick embryo leads to decreased cell production int he cerebral cortical germinal epithelium; In: Eur J Neurol., 2007, 14(2):181-6.

Mashayekhi, F.: Neural cell death is induced by neutralizing antibody to nerve growth factor: An in vivo study; In: Brain Dev., 2007.

Schulte-Herbrüggen, O., et al.: Neurotrophic factors—a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? In: Curr Med Chem., 2007,14(22):2318-29.

Cuello, AC., et al.: The failure in NGF maturation and its increased degradation as the probable cause for the vulnerability of cholinergic neurons in Alzheimer’s disease; In: Neurochem Res., 2007, 32(6): 1041-5.

Lad, SP., et al.: Nerve growth factor: structure, function and therapeutic implications for Alzheimer’s disease; In: Curr Drug Targets CNS Neurol Disord., 2003, 2(5):315-34.

Tuszynski, MH., et al.: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease; In: Nat Med., 2005, 11(5):551-5.

Tuszynski, MH.: Intraparenchymal NGF infusion rescue degenerating cholinergic neurons; In Cell Transplant., 2000, 9(5):629-36.

Trejo, JL., et al.: The effect of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis; In: Mol Cell Neurosci., 2007.

Galvan, V., et al.: Neurogenesis in the adult brain: implications for Alzheimer’s disease; In: CNS Neurol Disord Drug Targets., 2007, 6(5):303-10.

Mattson, MP.: Neuroprotective signaling and the aging brain: take away my food and let me run; In: Brain Res., 2000, 886(1-2):47-53.

Kim, GY., et al.: Effect of water-soluble proteoglycan isolated from Agaricus blazei on the maturation of murine bone marrow-derived dendritic cells; In: Int Immunopharmacol., 2005, 5(10):1523-32.

Lin, H., et al.: Maitake beta-glucan MD-fraction enhances bone marrow colony formation and reduces doxorubicin toxicity in vitro; In: Int Immunopharmacol., 2004, 4(1):91-9.

Wang, B., et al.: Effect of Ganoderma triterpene on proliferation of dendritic cells from mouse spleen; In: Zhong Yao Cai, 2005, 28(7): 577-9.

Smith, DE., et al.: Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy; In: Proc. Natl. Acad. Sci., 1999, 96:10893-98.

Nishina, A., et al.: Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK; In: J. Lipid Res., 2006,47:1434-1443.

Lin, H., et al.: Enhancement of umbilical cord blood cell hematopoiesis by Maitake beta-glucan is mediated by granulocyte colony-stimulating factor production; In: Clinical and Vaccine Immunology, 2007, 21-27.

Nishizawa, K., et al.: Antidepressant-like effect of Cordyceps sinensis int he mouse tail suspension test; In: Biol. Pharm. Bull.,2007, 30(9):1758-1762.

Tuszynski, MH., et al.: Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration; In:J. Neurosci., 1990, 10(11):3604-3614.

Frick, KM., et al.: The effect of nerve growth factor on spatial recent memory in aged rats persist after discontinuation of treatment; In: J. Neurosci., 1997,17(7):2543-2550.

Koh, JH., et al.: Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis; In: Biosci. Biotechnol. Biochem., 2002, 66(2):407-411.

Lee, EW., et al.: Two novel diterpenoids, erinacines H and I from Mycelia of Hericium erinaceum; In: Biosci. Biotechnol. Biochem., 2000, 64(11): 2402-2405.

Yano, S., et al.: Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N Mice; In: Biochemical Pharmacology, 2006, 54(14): 5203-5207.


Robinson, SC., et al.: A chemokine receptor antagonist inhibits experimental breast tumor growth; In: Cancer Research, 2003, 63, 8360-65.

Anita, E., et al.: Anti-angiogenesis therapy can overcome endothelial cell anergy and promte leukocyte-endothelium interactions and infiltration in tumors; In: FASEB J., 2006, 20: 621-630.

Nair, S., et al.: Synergy between tumor immunotherapy and antiangiogenic therapy; In:Blood, 2003, 102(3).

Zhang, L., et al.: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer; In: N Engl. J Med., 2003, 348: 203-13.

Steege, JCAB., et al.: Angiogenic profile of breast carcinoma determines leukocyte infiltration; In: Clinical Cancer Research, 2004, 10:7171-78.

Manning, EA., et al.: A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism; In: Clinical Cancer Research, 2007, 13: 3951-3959.

Patil, CS., et al.: Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice; In: Pharmacology, 2003, 69(2):59-67.

Elsisi, NS., et al.: Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia; In: Neuroscience Letters, 2005, 375(2): 91-96.

Lee, J., et al.: Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice; In: J Neurochem., 2002, 80(3): 539-47.

Mattson, MP., et al.: Existing data suggest that Alzheimer’s disease is preventable; In: Ann N Y Acad Sci., 2000, 924: 153-9.

Patel, NV., et al.: Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models; In: Neurobiol Aging, 2005, 26(7): 995-1000.

Szekely, CA., et al.: NSAID use and dementia risk in the Cardiovascular Health Study. Role of APOE and NSAID type; In: Neurology, 2007.

Hayden, KM., et al.: Does NSAID use modify cognitive trajectories int he elderly? The Cache County study; In: Neurology, 2007, 69(3): 275-82.

Wahner, AD., et al.: Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease; In: Neurology, 2007, 69(19): 1836-42.

Chen. H., et al.: Nonsteroidal antiinflammatory drug use and the risk of Parkinson’s disease; In: Ann Neurol., 2005, 58(6): 963-7.

Kim, G., et al.: Water extract of Cordyceps militaris enhances maturation of murine bone marrow-derived dendritic cells in vitro; In: Biol. Pharm. Bull., 2006, 29(2): 354-360.

Fang, J., et al.: Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression; In:Carcinogenesis, 2007, 28(4):858-64.

Liu, LZ., et al.: Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer; Mol Pharmacol., 2005, 68(3):635-43.

Lin, YL., et al.: Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and p38 mitogen-activated protein kinase pathways; In:J Leukoc Biol., 2005, 78(2):533-43.

Chan, WK., et al.: Ganoderma lucidum mycelium and spore extracts as natural adjuvants for immunotherapy; In: J Altern Complemet Med., 2005, 11(6): 1047-57.

Lin, Y., et al.: Polysaccahride purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice; In: Molecular Pharmacology, 2006, 70(2).

Osterweil, N., et al.: Significance of endothelial progenitor cells in hepatocellular carcinoma; In: Hepathology, 2006, 44:836-843.

Levenson, CW., et al.: Eat less, live longer? New insights into the role of caloric restriction in the brain; In: Nutr Rev., 2007, 65(9): 412-5.

Mattson, MP., et al.: Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: molecular mechanism; In: Mech Ageing Dev., 2001, 122(7): 757-78.

Mattson, MP., et al.: Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms; In: J Neurochem, 2003, 84(3): 417-31.

Stewart, KJ.: Exercise training: can it improve cardiovascular health in patients with type 2 diabetes? In: Br. J. Sports Med. 2004, 38:250-252.

Bahlmann, FH., et al.: Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists; In: Hypertension, 2005, 45: 526-529.

Levy, BI.: et al.: Beneficial effects of circulating progenitor endothelial cells activated by angiotensin receptor antagonists; In: Hypertension, 2005, 45:491-2.

Wang, CH., et al.: Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus; In: Am Heart J., 2006, 52(6):1051.e1-8.

Rehman, J., et al.: Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells; In: J Am Coll Cardiol. 2004, 43(12):2314-8.

Werner, N., et al.: Circulating endothelial progenitor cells and cardiovascular outcomes; In: N Engl J Med, 2005,353: 999-1007.

Tepper, OM., et al.: Human endothelial progenitor cells from type II diabetics exhibit ipaired proliferation, adhesion, and incorporation into vascular structures; In: Circulation, 2002,106:2781-86.

Bonsignore, MR., et al.: Circulating hematopoietic proenitor cells in runners; In: J Appl Physiol, 2002, 93:1691-7.

Morici, G., et al.: Supramaximal exercise mobilizes hematopoietic progenitors and retilocytes in athletes; In: Am J Physiol Regul Integr Comp Physiol, 289: R 1496-R1503.

Caballero, S., et al.: Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells; In: Diabetes, 2007, 56:960-967.

Pistrosch, F., et al.: In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction indepenent of glucose control; In: Diabetes Care., 2004, 27(2):484-90.

Pistrosch, F., et al.: PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells; In: Atherosclerosis., 2005, 183(1):163-7.

Mancini, GB., et al.: Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease; In: J Am Coll Cardiol., 2006, 47(12):2554-60.

Lee, VC., et al.: Meta-analysis: angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction; In: Ann Intern Med., 2004, 141(9): 693-704.

Michaud, SE., et al.: Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities; In: Atherosclerosis., 2006, 187(2):423-32.

Heiss, C., et al.: Impaired progenital cell acivity in age-related endothelial dysfunction; In: J Am Coll Cardiol., 2005, 45(9):1441-8.

Michowitz, Y., et al.: Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure; In: Heart, 2007, 93:1046-1050.

Imanishi, T., et al.: Oxidised low-density lipoprotein inhibits vascular endothelial growth factor-induced endothelial progenitor cell differentiation; In: Clin Exp Pharmacol Physiol., 2003, 30(9): 665-70.

Hill, JM., et al.: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk; In: N Engl J Med., 2003, 348: 593-600.

Vasa, M., et al.: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease; In: Circ. Res., 2002; 89:e1-e7.

Wang, HY., et al.: Circulating endothelial progenitor cells, C-reactive protein and severity of coronary stenosis in Chinese patients with coronary artery disease; In: Hypertens Res, 2007, 30(2).

Cubal, Ch., et al.: Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans; In: J Thorac Cardiovasc Surg, 2006, 132: 1112-8.

Uemura, R., et al.: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling; In: Circulation Researh, 2006,98:1414.

Wojakowski, W., et al.: Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? In: Heart, 2008; 94: 27-33.

Tongers, J., et al.: Frontiers in nephrology: the evolving therapeutic applicaions of endothelial progenitor cells; In: American Society of Nephrology, 2007, 18:2843-52.

Palange, P., et al.: Circulating haemopoietic and endothelial progenitor cells are decreased in COPD; In: Eur Respir J., 2006, 27:529-41.

Sobrino, T., et al.: The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome; In: Stroke, 2007, 38:2759.

Westerweel, PE., et al.: Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus; In: Annals of the Rheumatic Diseases, 2007, 66: 865-70.

Kissel, ChK., et al.: Selective functional exhaustion of hematopoietic progenior cells in the bone marrow of patients with postinfarction hart failure; In: J Am Coll Cardiol., 2007, 49: 2341-2349.

Boos, ChJ., et al.: Relationship between circulating endothelial cells and the predicted risk of cardiovascular events in acute coronary syndromes; In:European Heart Journal, 2007, 28(9):1092-1101.

Roberts, N., et al.: Endothelial progenitor cells are mobilized after cardiac surgery; In: Ann Thorac Surg, 2007; 83: 598-605.

Laufs, U., et al.: Running exercise of different of different duration and intensity: effect on endothelial progenitor cells in healthy subjects; In: Eur J Cardiovasc Prev Rehabil., 2005, 12(4):407-14.

Steiner, S., et al.: Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease; In: Atherosclerosis, 2005, 181(2):305-10.

Adams, V., et al.: Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced Ischemia; In: Arterioscler Thromb Vasc Biol., 2004, 24:684-90.

Sandri, M., et al.: Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes; In: Circulation., 2005; 111: 3391-3399.

Laufs, U., et al.: Physical training increases endothlial progenitor cells, inhibits neointima formation, and enhances angiogenesis; In: Circulation, 2004, 109, 220-226.

Kraenkel, N., et al.: Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells; In: Arterioscler. Thromb. Vasc. Biol., 2005, 25, 698-703.

Schmidt-Lucke, C., et al.: Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair; In: Circulation, 2005, 111: 2981-7.

Fadini, GP., et al.: Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk; In: European Heart Journal, 2006, 27, 2247-55.

Fadini, GP., et al.: Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus; In: J Am Coll Cardiol., 2005, 45(9):1449-57.

Werner, N., et al.: Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? In: Arterioscler. Thromb. Vasc. Biol., 2006, 26, 257-66.

Lesnik, Ph., et al.: A new dimension int he vasculoprotective function of HDL: progenitor-mediated endothelium repair; In: : Arterioscler. Thromb. Vasc. Biol., 2006, 26, 965-7.

Chen, JC., et al.: Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia; In: Clin Sci (Lond.)., 2004, 107(3):273-80.

Hoetzer Gl., et al.: Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men; In: J Appl Physiol, 2007, 102(3):847-52.

Wang, X., et al.: Effects of ox-LDL on number and activity of circulating endothelial progenitor cells; In: Drug Chem Toxicol., 2004, 27(3):243-55.

Loomans, CJ., et al.: Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? In: Antioxid Redox Signal., 2005, 7(11-12): 1468-75.

Capla, JM., et al.: Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia; In: Plast Reconstr Sur., 2007, 119(1):59-70.

Tepper, OM., et al.: Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures; In: Circulation., 2002, 106(22):2781-6.

Tso, C., et al.: High-density lipoproteins enhance progenitor-mediated endothelium repair in Mice; In: Arterioscler. Thromb. Vasc. Biol., 2006, 26: 1144-49.

Yang, B., et al.: Hypolipidemic effect o fan exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus; In: Biosci. Biotechnol. Biochem.,2003, 67(6):1292-98.

Koh, J., et al.: Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis; In: Biol. Pharm. Bull.,2003, 26(1): 81-87.

Chen, Y., et al.: High glucose impairs early and late endothelial progenitor cells by modifying nitric oxid-related but not oxidative stress-mediated mechanisms; In: Diabetes, 2007, 56, 1559-68.

Fadini, GP., et al.: Significance of endothelial progenitor cells in subjects with diabetes; In: Diabetes Care, 2007, 30(5).

Li, M., et al.: Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via „imported” nitric oxide synthase activity; In: Circulation, 2005, 111: 1114-20.